Select a Course:	Math Grade K
Teacher:	CORE Math Grade K
Course:	Math Grade K
Year:	$2016-17$
Months:	- All -

$\begin{aligned} & \text { 出 } \\ & \overrightarrow{0} \\ & \frac{3}{4} \end{aligned}$	Enduring Understandings	Essential Questions	Standards	Knowledge \& Skills	Academic Language
$\begin{aligned} & \frac{2}{\omega} \\ & \frac{0}{E} \\ & \frac{5}{0} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	6. Kindergarten Math Counting 0-10 Objects Approximate Time Frame: 4 weeks				
	Enduring Understandings	Essential Questions	Standards	Knowledge \& Skills	Academic Language
	Counting is used to find how many or how much a quantty represents. The last number said when counting a quantity of objects is the total number of objects in that group. The total number of objects is represented with a numeral. Counting one more will be the next larger number.	Why do we count? How is number order helpful to us? What can numerals represent?	K.CC.A. 1 - Know number names and the count sequence \sim Count to 100 by ones and by tens. K.CC.A. 3 - Know number names and the count sequence \sim Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). K.CC.B.4a - Count to tell the number of objects \sim When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. K.CC.B.4b-Count to tell the number of objects ~ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. K.CC.B.4c - Count to tell the number of objects ~ Understand that each successive number name refers to a quantity that is one larger.	Prerequisite Skills/Concepts: Students should already be able to... Recall hearing/seeing others rote count and count objects. Seqence and order of counting numbers. Names of numerals. Subitize (instantly recognize) within 5. Use one-to-one correspondence when counting. Know and say the standard order when counting. Count within 10 (including 0). Name the next number in a counting sequence. Number recognition to count objects and pictures, or count out appropriate quantities of objects in real-world situations. Sense of quantity to recognize that the	Number names (zero, one, two, three four, five, six, seven, eight, nine, ten) Number Numerals How many Count Order Supplemental Terms: Cardinality Quantity

number of objects is the same regardless of the arrangement. For example a group of 6 objects is the same quantity regardless of wether they are scattered or arranged in a line, circle, regctangle, die or domino pattern.

- 1. Make sense of problems and persevere in solving them.

느 2. *Reason abstractly and quantitatively. Students understand that numbers represent quantity.
3. Construct viable arguments and critique the reasoning of others. Students represent their arguments through the act of counting objects and stating the total quantity counted. They also represent their arguments when counting out a quantity of objects to represent a numeral. They critique each other's reasoning when discussing whether they agree or disagree with peers who have counted the same set of objects.
(7) *4, Model with mathematics. Students model the value of numbers with objects and visuals.

ค. Use appropriate tools strategically.

6. Attend to

Precision. Students attend to the precise sequence of number names when counting. This includes attention to the value of zero.
7. Look for and make use of structure. Students will recognize the appropriate order for saying the counting sequence. Students recognize the familiar visual arrangements to

			begin subitizing. *8. Look for and express regularity in repeated reasoning. Students use their understanding of the structure and sequence of numbers to count appropriately in a variety of contexts. They use repated reasoning to understand that the value of a number is consistent regardless of the arrangement of objects. (Conservation of number) Advanced Skills/Concepts: Some students may be read to... ~ Subitize (instantly recognize) objects in different arrangments and begin using small groups or units when counting objects. ~ Use grouping strategies when they count. ~Begin predicting "what's next?" when asked about the next number in a sequence.	
		K.CC.A. 1 - Know number names and the count sequence \sim Count to 100 by ones and by tens. K.G.A. 1 - Identify and describe shapes ~ Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.		

用 Grade Kindergarten Math Position Language Un
Unit can be one to two weeks. This unit continues into October and can be assessed in October.

Enduring Understandings

Positional words can be used to describe relative position of objects in real life environment and numbers in the counting sequence.

a
Objects and people have position relative to other objects.

Essential Questions

(How are positional words used in math?

Standards

K.G.A. 1 - Identify and describe shapes ~ Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.

WIDA.2012.K.3.1 - Entering ~ Indicate attributes of objects (e.g., "big", "small") using gestures and words in small groups

Knowledge \& Skills

Language for relative position of objects to model and describe objects in their environment.	- A
	- Beside
using	
counting sequ	
cour	
Problems and	

persevere in solving them. Students will make sense of the position terms to describe and model relative positions of objects and numbers.

Reason abstractly and quantitatively.
Students will reason about the sequence of numbers and the terms used to describe it.

* Construct viable

 arguments and critique the reasoning of others. Students construct arguments when they explain the locations of objects or numbers, or why they have used a particular term to describe the position. They will critique others when they explain why they agree or disagree with them regarding the positional language or position used in the placement of objects or numbers.
* Model with

 mathematics. Students will begin using mathematical terms to describe objects in real life contexts. They will begin looking at numerals in context of location.- Use appropriate tools strategicially. Students use their objects to model the positional language.
* Attend to Percision. Students attend to precision by listening to the precise language of directions and either repeating or acting out situations involving relative positions.

W Look for and make use of structure. Through developing understanding of positional words, students will be able to describe the counting sequence.

Inside Outside Under

相 Kindergarten Math Counting 0-20 Unit is approximately 4-5 weeks.

Enduring Understandings

Each successive number name refers to a quantity that is one larger.

The last number name said is the total number of objects counted.

Relationships between numbers and quantities; connect counting to cardinality.

Knowledge of numbers $0-10$ can be applied to predict order and sequence in higher numbers (10-20, 20-30, etc)

Essential Questions

- How does knowing numbers 0 10 help you in counting other numbers?

ก. What is significant about the teen numbers?

- How can you use 0-10 to predict other counting sequences?

Standards

K.CC.A. 2 - Know number names and the count sequence ~ Count forward beginning from a given number within the known sequence (instead of having to begin at 1).
K.CC.A. 3 - Know number names and the count sequence \sim Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).
K.CC.B. 5 - Count to tell the number of objects ~ Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.

Knowledge \& Skills
 Academic Language

Count out a given quantity of objects within 20.
Skills: Students will be able to do...
Write numerals for quantitis within 20.
© Skills: Students will be able to do...
Connect a numeral with a quantity.

- H Highlighted

 Mathematical Practices: (Practices to be explicity emphasized are indicated with an *.)
1. Make sense of problems and persevere in solving

 them.
*2. Reason

 abstractly and quantitatively. Students will use their understanding of position and quantity to count from any given number. They reason about the value of the numbers as they count quantities of objects and pictures or count out objects.*3. Construct viable arguments and critique the reasoning of others. Students construct arguments when they explain why they believe a quantity should be labled with a particular number or numeral. They critique each others' reasoning when they explain why they agree or disagree with totals or representations.

*4. Model with

 mathermatics.Students will count within 10 and use manipulatives, pictures, symbols,

			language and realworld situations to create models for each number. 5. Use appropriate tools strategically. 6. Attend to precision. Students attend to the precise language and order of the count sequence. They make sure they use the appropriate name for the quantity. *7. Look for and make use of structure. Students will apply understanding of numbers 0-10 to count and quantify numbers 0-20. *8. Look for and express regularity in repeated reasoning. Students can apply what they know 0-10 to the next 10 numbers based on the nature of our base-10 system. Advanced Skills/Concepts: ~ Application of Base10 number system to count other number sequences within 100.
		K.CC.A. 1 - Know number names and the count sequence \sim Count to 100 by ones and by tens. K.CC.B. 4 - Count to tell the number of objects ~ Understand the relationship between numbers and quantities; connect counting to cardinality. K.CC.B.4a - Count to tell the number of objects \sim When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. K.CC.B.4b - Count to tell the number of objects ~ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. K.CC.B.4c - Count to tell the number of objects ~ Understand that each successive number name refers to a quantity that is one larger.	Transfer: Students will apply... ~Knowledge of numbers $0-10$ to count and represent numbers up to 20. ~ Counting skills to answer the questions of "how many" for as many as 20 objets arranged in a line, a rectangular arry, or a circle, or as many as 10 things a scattered configuration given a number from 1-20, count out that many objects.

ㄴ Kindergarten Math Comparing and Measuring Approximate Tlme Frame: 4 Weeks

Enduring Understandings

스 ~ Comparing quantity of numbers can be described as less than, greater than or equal to.

으 ~ Some attributes are measurable and both numbers and words can be used to describe and compare the measurements.

ㅅ ~ Groups can be quantified for comparison and order.

ㄴ Written numerals represent an amount and each numeral represents a different amount.

Essential Questions

图 How do we determine measurable attributes of objects?

A Why do we use attributes of objects to compare quantity?

Standards

K.CC.C. 6 - Compare numbers ~ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 1
K.CC.C. 7 - Compare numbers \sim
Compare two numbers between 1 and 10 presented as written numerals.
K.MD.A. 1 - Describe and compare measurable attributes ~ Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.
K.MD.A. 2 - Describe and compare measurable attributes \sim Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference.
K.MD.B. 3 - Classify objects and count the number of objects in each category ~ Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.

Knowledge \& Skills

A Prerequisite
Skills/Concepts:
~ Understanding of
quantity of numerals
within 10 .
~ Understand quantity
of number in any
configuration to
answer "how many?"
(within 10)
~ Counting numbers
have measurable
quantity.

Knowledge:

Students will know...

How to compare objects based on quantity to identify more, less, or equal.

Students will know...
Sowledge:
$\begin{aligned} & \text { How to categorize } \\ & \text { objects using }\end{aligned}$ attributes.

Knowledge:

Students will know...

How to measure and compare 2 objects.

- Knowledge:

Students will know...
Comparison language

Skills: Students will be able to do...
Identify counts of
objects as more than,
less than, or equal to.

Skills: Students will be able to do...

Sort objects into groups and count the number of objects in

Academic Language

ค Greater than

- Less than

ค Equal to
More of
เ Less of
Attribute
는 Taller
는 Shorter
(1) Length

ิ. Weight
ใ Quantity
ก Number words
ก
Difference (within
context of
Measurement
Standard)
ㄱ. Compare
Group/Unit
©
© Supplemental
Terms:
~ Number Words
~ Numerals
~ Count
~Longer
~ Shorter
~ Lighter
\sim Heavier

			use of structure. *8. Look for and express regularity in repeated reasoning.
		K.CC.A. 1 - Know number names and the count sequence \sim Count to 100 by ones and by tens. K.CC.A. 3 - Know number names and the count sequence \sim Write numbers from 0 to 20 . Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). K.CC.B. 4 - Count to tell the number of objects ~ Understand the relationship between numbers and quantities; connect counting to cardinality.	Transfer: Students will apply... ~Knowledge of quantity within numbers to sort objects into categories by count. ~ Understanding of attributes to categorize objects. ~ Describing objects based on measurable attributes. ~ Comparison language to describe the relationship between two objects based on measurable attributes.

$\stackrel{\stackrel{\rightharpoonup}{0}}{\circ}$
 Enduring Understandings
 Enduring
 Understandings

Essential Questions

Standards

Knowledge
\& Skills

Academic Language

Kindergarten Math Combinations Within 5 Approximate Time Frame: 4 weeks

-

The quanity of numbers can be combined in different groups of numbers.

Numbers can be decomposed with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations and can be demonstrated in more than one way.

Number combinations are used for addition and subtraction of numbers within 5 .

ก Numbers are composed of other numbers.
-
Numbers can be

Essential Questions

0
How many combinations of numbers can you find within 2? 3? 4? 5?

How can we represent number combinations within 5 ?

- How can knowing how to put together and take apart numbers help form other numbers?

Standards

K.OA.A. 1 - Understand addition, and understand subtraction ~ Represent addition and subtraction with objects, fingers, mental images, drawings1, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.
K.OA.A. 2 - Understand addition, and understand subtraction \sim Solve addition and subtraction word problems, and add and subtract within 10 , e.g., by using objects or drawings to represent the problem.
K.OA.A. 3 - Understand addition, and understand subtraction ~ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$).
K.OA.A. 5 - Understand addition, and understand subtraction ~ Fluently add

Knowledge \& Skills

Academic Language

decomposed into other numbers.
and subtract within 5 .

Use knowledge of	Additions
number combinations	sign/plus sign
to fluenty add and	
subtract within 5.	Subtraction
	Sign/minus sign

Skills: Students will be able to do...

Represent addition and subtraction with multiple modalities.

Skills: Students will be able to do...

Represent addition and subtraction word problems with objects or drawings.

Highlighed Mathematical Practices: (Practices to be explicity emphasized are indicated with an *.)

1. Make sense of problems and persevere in solving them.
*2. Reason abstractly and quantitatively. Students will demonstrate abstract reasoning when recording composition and decomposition with written symbols.
*3. Construct viable arguments and critique the reasoning of others. Students will use different modalities to construct their arguments regarding number quantity and different cobinations of number. They will critique each other when they discuss the validity of various representations.
*4. Model with mathematics.
Students will represent number combinations with objects, fingers, drawings, expressions, equations, to model addition and

			subtraction. *5. Use appropriate tools strategically. Students will use tools such as links, snap cubes, color tiles, dice, dominoes, five and ten frames, number bonds, dot cards, two-color counters and various other counters to look at different combinations of the same number. 6. Attend to precision. *7. Look for and make use of structure. Students use the structures inherent in composition and decomposition of numbers to build fluency of number combinations within 5 as foundation for additition/subtraction. 8. Look for and express regularity in repeated reasoning.
		K.CC.A. 1 - Know number names and the count sequence \sim Count to 100 by ones and by tens. K.CC.A. 3 - Know number names and the count sequence \sim Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).	Transfer: Students will apply... ~ Knowledge of counting numbers and cardinality to build fluency of number combinations to 5 . ~ Understanding of composition and decomposition to model real word situations involving addition and subtraction within 5.

Kindergarten Math Combinations within 10 Approximate Time Frame: 4 Weeks

Enduring Understandings

Different combinations of numbers within 10 represent addition and subtraction.

Word problems can be represented with objects or drawings.

Essential Questions

How are word problems connected to number combinations?

How can I combine numbers to make a new number?

Standards

K.OA.A. 1 - Understand addition, and understand subtraction ~ Represent addition and subtraction with objects, fingers, mental images, drawings1, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.
K.OA.A. 2 - Understand addition, and

Knowledge \& Skills

Equations can be build by decomposing numbers in more than one way.

Quantities can be created using a variety of individual sets.
understand subtraction ~ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
K.OA.A. 3 - Understand addition, and understand subtraction ~ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$).
K.OA.A. 4 - Understand addition, and understand subtraction ~ For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.
K.OA.A. 5 - Understand addition, and understand subtraction ~ Fluently add and subtract within 5 .

~Write numbers within 20.	Word Problems Number
~Represent word problems with objects or drawings.	Numeral Equation
Knowledge: Students will know..	\% Represent
Combinations of 10 using modalities.	
Knowledge: Students will know..	
Number combinations within 5.	
Skills: Students will be able to...	
Use knowledge of number combinations to fluenty add and subtraction within 5 .	

Skills: Students will be able to...

Represent addition and subtraction word problems with multiple modalities within 10. (objects and drawings)

Skills: Students will be able to...

Extend number combinations of 5 to combinations within 10 by using objects or drawings, and record the answer with a drawing or equations.

Advanced

 Skills/Concepts:~ Students can build word problems using all modalities.
~ Students can extend combinations of 10 to fluent additions/subtraction within 10.

Highlighted Mathematical Practices: (Practices to be explicitly emphasized are
indicated with an *.)
*1. Make sense of problems and persevere in solving them. Students will make sense of realword problems by representing the situations using manipulatives, pictures and equations.
2. Reason absractly and quantitatively. Students reason about the quantities they represent by making sure their visual models accurately represent the numerals and vice versa.
3. Construct viable arguments and critique the reasoning of others. Students construct arguments regarding the accuracy of their representations and critique others' reasoning when they consider whether they agree or disagree with their representations.

4. Model with

 mathematics. Students create visual models of the realworld problems using manipulatives and diagrams. They can also tell stories to represent numerical expressions and equations.5. Use appropriate tools strategically.

6. Attend to

 precision.
7. Look for and make use of structure. Students exhibit understanding of this practice when they show that the number changes when you add or subtract, exvept when adding or subtracting zero.
 8. Look for and express regularity in repeated reasoning.

			Students demonstrate repeated reasoning when they show that there are multiple combinations of numbers that equal the same number, and there are multiple strategies to solve addition and subtraction problems.
			Transfer: Students will apply... Number knowledge to solve addition and subtraction word problems, involving adding to, taking from, putting together and taking apart situations.

6indergarten Math Teen Numbers Approximate Time Frame: 8 Weeks

Enduring Understandings

ㄴ Teen numbers are composed of a group of ten and some more.

Essential Questions

-

How can I put together and take apart teen numbers?

Standards

K.CC.A. 2 - Know number names and the count sequence \sim Count forward beginning from a given number within the known sequence (instead of having to begin at 1).
K.NBT.A. 1 - Work with numbers 11-19 to gain foundations for place value ~ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as $18=10+8$); nderstand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.
K.OA.A. 1 - Understand addition, and understand subtraction ~ Represent addition and subtraction with objects, fingers, mental images, drawings1, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

Knowledge \& Skills

- Prerequisite Skills/Concepts:
 Students should already be able to...

~ Fluency in combinations to 5 .
~Work with combinations to 10 using modalities.
~ Word problems using objects or drawings as well as recording the answer with drawings or equations.

Knowledge: Students will know...

Number names for teen numbers.

Skills: Students will be able to do...

Decompose/compose teen numbers into a group of ten and some ones, using modalities as well as a numerical representation.

ـ Skills: Students will be able to do...

Academic Language

Supplemental

Terms:

 Base-ten system Digitones, tens, hundreds

			their representations. 4. Model with mathematics. Students will use manipulatives, drawing and ten frames to represent the teen numbers. 5. Use appropriate tools strategically. Students will use appropriate manuipulatives to show teen numbers. 6. Attend to precision. Students will count and re count to check for precision when making teen numbers. 7. Look for and make use of structure. Students will be sure that every teen number is composed of a ten and some ones. 8. Look for and express regularity in repeated reasoning. Students will demonstrate their understanding of teen numbers by knowing that they are always made of a ten.	
		K.CC.A. 1 - Know number names and the count sequence ~ Count to 100 by ones and by tens. K.CC.A. 3 - Know number names and the count sequence \sim Write numbers from 0 to 20 . Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). K.OA.A. 5 - Understand addition, and understand subtraction ~ Fluently add and subtract within 5 .	Transfer: Students will apply... Knowledge of smaller numbers (combinations to 5 , combinations to 10) and counting to 10 to decompose teen numbers as "ten and some more ones" by using objects or drawings, and recording each composition or decomposition by a drawing or equation.	

은 Kindergarten Math Flat Shapes No Time Frame Listed

Enduring Understandings

T Two-dimensional shapes are flat.

Essential Questions

Standards

Knowledge \& Skills

突
in

Academic
Language
K.G.A. 1 - Identify and describe shapes ~ Describe objects in the environment using names of shapes, and describe the

T Prerequisite Skills/Concepts: Students should

Attributes are used to compare and analyze shapes.

Basic shapes are used to create more complex shapes.

Two dimensional shapes can be built from components.

The location of objects are described by using positional words.
relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
K.G.A. 2 - Identify and describe shapes ~ Correctly name shapes regardless of their orientations or overall size.
K.G.B. 4 - Analyze, compare, create, and compose shapes ~ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).
K.G.B. 5 - Analyze, compare, create, and compose shapes \sim Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
K.G.B. 6 - Analyze, compare, create, and compose shapes \sim Compose simple shapes to form larger shapes

already be able to: ~ Use positional language (above, below, next to, behind, in front of, beside) to describe the location of objects.	Circle Triangle Rectangle Attribute
Knowledge: Students will know... Names of twodimensional shapes (squares, circles, triangles, rectangles)	Side Length Vertices
Knowledge: Students will know... Defining attributes of flat shapes.	Corners Supplemental Terms: Orientation
Skills: Students will be able to do... Draw shapes (circle, square, rectangle, triangle, hexagon)	
Skills: Students will be able to do... Build two-dimensional shapes from smaller shapes.	
Skills: Students will be able to do... Analyze and compare two-dimensional shapes using informal language (e.g. number of sides and vertices/ "corners" or having sides of equal length).	
Highlighted Mathematical Practices: (Practices to be explicitly emphasized are indicated with an *.)	
1. Make sense of problems and persevere in solving them.	
*2. Reason abstractly and quantitatively. Students reason about the attributes of two dimensional figures.	

K.OA.A. 5 - Understand addition, and understand subtraction ~ Fluently add and subtract within 5 .

(1) Kindergarten Math Solid Shapes Approximate Time Frame: 4-5 weeks

Enduring Understandings

备
Three-dimensional shapes have unique attributes.

Three-dimensional shapes have specific names regardless of their orientations or overall size.

Shapes can be used to build pictures, designs and other shapes.

슴
Shapes can be build from components.

Essential Questions

How are 2D and 3D shapes alike and different?

- Why is it important to use math words to describe 2dimensional and 3 dimensional shapes?

Standards

K.G.A. 1 - Identify and describe shapes ~ Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
K.G.A. 2 - Identify and describe shapes ~ Correctly name shapes regardless of their orientations or overall size.
K.G.A. 3 - Identify and describe shapes ~ Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
K.G.B. 4 - Analyze, compare, create, and compose shapes ~ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).
K.G.B. 5 - Analyze, compare, create, and compose shapes ~ Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
K.G.B. 6 - Analyze, compare, create, and compose shapes ~ Compose simple shapes to form larger shapes

Knowledge \& Skills

St St co and sh de of at

Students will know...
Attributes of flat and solid shapes.

Knowledge: Students will know...

Names of 2 and 3dimensional shapes.

ใิ Skills: Students will be able to do...

Analyze and compare 2 and 3-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts and other attributes.

Skills: Students will be able to do...

Model shapes in the world by building shapes from components and drawing shapes.

Skills: Students will be able to do...

Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.

Academic Language

Rectangular prism

					the name is not identified by its size． ＊8．Look for and express regularity in repeated reasoning． Students will analyze and compare three dimensional shapes to discuss similarities and differences between them．		
				K．CC．A． 1 －Know number names and the count sequence \sim Count to 100 by ones and by tens． K．CC．A． 3 －Know number names and the count sequence \sim Write numbers from 0 to 20 ．Represent a number of objects with a written numeral 0－20（with 0 representing a count of no objects）． K．NBT．A． 1 －Work with numbers 11－19 to gain foundations for place value～ Compose and decompose numbers from 11 to 19 into ten ones and some further ones，e．g．，by using objects or drawings， and record each composition or decomposition by a drawing or equation （such as $18=10+8$ ）；nderstand that these numbers are composed of ten ones and one，two，three，four，five，six， seven，eight，or nine ones．	Transfer： Students will apply．．． ～Knowledge of two－ dimensional shapes to three－dimensional shapes to describe their similarities， differences，parts （e．g．，number of sides and vertices／＂corners＂） and other attributes （e．g．，having sides of equal length）． ～Modeling of shapes in the world by building shapes from components and drawing shapes．		
$\stackrel{0}{5}$	Enduring Understandings	Essential Questions	劲	Standards 尓	Knowledge \＆Skills	Academic Language	\％
$\frac{2}{3}$	Enduring Understandings	Essential Questions	§	Standards 发	Knowledge \＆Skills	Academic Language	\％

